FUNDAMENTOS DE REDES - 5.2.1.3 Fddi
  Home
  Libro de visitantes
  UNIDAD IV
  UNIDAD V
  => 5.1.1 Direccionamiento Mac
  => 5.1.2 Entramado
  => 5.1.3 Control Acceso al Medio
  => 5.2 Tecnologías Ieee 802x
  => 5.2.1 Principios básicos
  => 5.2.1.1 Token Ring
  => 5.2.1.2 Ethernet y Variantes
  => 5.2.1.3 Fddi

 

Define un protocolo de alta velocidad en el cual las estaciones enlazadas comparten un bus doble de fibra óptica que utiliza un método de acceso llamado bus dual de cola distribuida o DQDB Distributed Queue Dual Bus.

DQDB es una red de transmisión de celdas que conmuta celdas con una longitud fija de 53 bytes, por lo tanto, es compatible con la ISDN de banda ancha ISDN-B y ATM. la conmutación de celdas tiene lugar en el nivel de control de enlaces lógicos 802.2.

DQDB es el acrónimo de (Distributed-queue dual-bus) que en español viene a decir (Bus Dual de Cola Distribuida). En el campo de las telecomunicaciones, el Bus Dual de Cola Distribuida (DQDB) es una red multi-acceso con las siguientes características:

a) Se apoya en las comunicaciones integradas utilizando un bus dual y organizándolo todo mediante una cola distribuida.

b) Proporciona el acceso a las redes de área local (LAN) o área metropolitana (MAN).

c) Se apoya en las transferencias de datos con estado sin conexión, en las transferencias de datos orientadas a conexión, y en comunicaciones isócronas tales como la comunicación por voz. Un ejemplo de red que proporciona métodos de acceso DQDB es la que sigue el estándar IEE 802.6.

Para entender la DQDB, antes debemos explicar el concepto de una red de área metropolitana (MAN) que cubre una gran área geográfica y que además promete alta velocidad, algo que desde el punto de vista geográfico no podría manipular una LAN (Red de Área Local). A comienzos de la década de los 80, el Instituto de Ingenieros Eléctricos y Electrónicos (IEEE), estableció unos comités denominados comités 802, cuyo objetivo era el desarrollar estándares para las redes. Inicialmente se desarrollo el QSPX (Intercambio Síncrono de Colas de Paquetes) fue desarrollado por la Universidad de Western (Australia) y permitía una distribución rápida y eficiente de paquetes. Posteriormente esta Universidad se vinculó comercialmente con Telecom Australia, y el QPSX fue sometido a juicio por la IEEE, y se le aplicó el estándar 802.6.Posteriormente la IEEE le cambió al nombre y la denominó: DQDB (Bus Dual de Cola Distribuida). Durante el debate sobre sus características se dieron cuenta que esta tecnología permitía manejar velocidades de más de 20MBps.Esto implicaba que para poder utilizar ese estándar, debían de consultar con la ANSI (Instituto Nacional Estadounidense de Estándares), pero la IEEE no lo hizo, la ANSI se sintió indispuesta. Lo siguiente fue que empresas europeas como Alcatel N.V (Paris) y Siemenx Aktiengesellschaft (Múnich), se apropiaron de una extensa área geográfica utilizando tecnologías basadas en QSPX. Los americanos, acostumbrados a ser líderes en el campo de desarrollo tecnológico, decidieron ante este hecho tomar otros rumbos para el diseño de MAN. En 1990, Telecom comienza a experimentar comercialmente con las DQDB, pero no es hasta 1992 cuando abre su servicio de cara al público. Este servicio se comercializó con el nombre de FASTPAC2 (2MBps) y FASTPAC 10? (10MBps bajo fibra óptica); además este sistema fue utilizado posteriormente por un conjunto de ciudades europeas.

Operaciones efectuadas por una DQDB En las DQDB, el Control de Acceso al Medio (MAC) es un algoritmo desarrollado por Robert Newman en su tesis de PhD en los años 80 en la University of Western Australia. Para apreciar la innovación que supuso la creación de este algoritmo MAC, debemos de compararlo con la perspectiva que ofrecían los protocolos de las LAN (Local Area Network) de esa época, que se habían basado en la difusión (Broadcast) tales como la Ethernet IEEE 802.3, o con topología en anillo como el token-ring IEEE 802.5, o las FDDI. El DQDB se puede pensar como dos token-rings, uno de ellos lleva los datos alrededor del anillo. El anillo está dividido en dos de nodos, y que supone una ventaja si se produce alguna rotura en alguna parte del anillo, ya que el anillo se puede cerrar por la rotura para quedar como un anillo con una sola rotura nuevamente. Esto proporciona relativa confiabilidad la cuál es muy importante en las Redes de Área Metropolitana (MAN), dónde las reparaciones pueden provocar que ciertas LAN queden inaccesibles. El estándar IEEE 802.6 (DQDB) fue desarrollado mientras que la ATM (ISDN de Banda Ancha) todavía estaba en un desarrollo temprano, pero sin embargo existe una gran similitud entre ambos estándares ya que por muchos es considerado que la DQDB es la precursora de la tecnología ATM. Las celdas de una ATM y los marcos de DQDB están en armonía, ya que ambas colocaron un marco de 48 bytes con una cabecera de 5 bytes. En el algoritmo DQDB, una cola distribuida fue puesta en ejecución, comunicando el estado de la cola a la cabecera. Cada nodo de una red DQDB mantiene un par de variables de estado que representan su posición en la cola distribuida, además de la propia longitud de la cola. Las cabeceras en el bus inverso comunican peticiones que son insertadas en la cola distribuida de modo que los nodos de upstream sepan que deben permitir a las celdas DQDB pasar al bus delantero. En definitiva, es un algoritmo notable para su gran simplicidad.

Las redes FDDI (Fiber Distributed Data Interface -Interfaz de Datos Distribuida por Fibra) surgieron a mediados de los 80’s para dar soporte a las estaciones de trabajo de alta velocidad, que habían llevado las capacidades de las tecnologías Ethernet y Token Ring existentes hasta el límite de sus posibilidades.

Están implementadas mediante una física de estrella y lógica de anillo doble de token, el tráfico de cada anillo viaja en direcciones opuestas. Uno transmitiendo en el sentido de las agujas del reloj (anillo principal ) se conoce como anillo primario utilizado para la transmisión de datos y el otro en dirección contraria (back up) llamado también anillo secundario usado generalmente como respaldo, que ofrece una velocidad de 100 Mbps sobre distancias de hasta 200 metros, soportando hasta 1000 estaciones conectadas. Su uso más normal es como una tecnología de backbone para conectar entre sí redes LAN de cobre o computadores de alta velocidad. Físicamente, los anillos están compuestos por dos o más conexiones punto a punto entre estaciones adyacentes.

Se distinguen en una red FDDI dos tipos de estaciones:

Estaciones Clase B, o estaciones de una conexión (SAS) , se conectan a un anillo.

Estaciones Clase A, o estaciones de doble conexión (DAS) , se conectan a ambos anillos.

Las SAS se conectan al anillo primario a través de un concentrador que suministra conexiones para varias SAS. El concentrador garantiza que si se produce una falla o interrupción en el suministro de alimentación en algún SAS determinado, el anillo no se interrumpa. Esto es particularmente útil cuando se conectan al anillo PC o dispositivos similares que se encienden y se apagan con frecuencia.

Las redes FDDI utilizan un mecanismo de transmisión de tokens similar al de las redes Token Ring, pero además, acepta la asignación en tiempo real del ancho de banda de la red, mediante la definición de dos tipos de tráfico:

  1. Tráfico Síncrono: Puede consumir una porción del ancho de banda total de 100 Mbps de una red FDDI, mientras que el tráfico asíncrono puede consumir el resto.
  2. Tráfico Asíncrono: Se asigna utilizando un esquema de prioridad de ocho niveles. A cada estación se asigna un nivel de prioridad asíncrono.

El ancho de banda síncrono se asigna a las estaciones que requieren una capacidad de transmisión continua. Esto resulta útil para transmitir información de voz y vídeo. El ancho de banda restante se utiliza para las transmisiones asíncronas FDDI también permite diálogos extendidos, en los cuales las estaciones pueden usar temporalmente todo el ancho de banda asíncrono. El mecanismo de prioridad de la FDDI puede bloquear las estaciones que no pueden usar el ancho de banda síncrono y que tienen una prioridad asíncrona demasiado baja. En cuanto a la codificación, FDDI no usa el sistema de Manchester, sino que implementa un esquema de codificación denominado esquema 4B/5B , en el que se usan 5 bits para codificar 4. Por lo tanto, dieciséis combinaciones son datos, mientras que las otras son para control. Debido a la longitud potencial del anillo, una estación puede generar una nueva trama inmediatamente después de transmitir otra, en vez de esperar su vuelta, por lo que puede darse el caso de que en el anillo haya varias tramas a la vez. Las fuentes de señales de los transceptores de la FDDI son LEDs (diodos electroluminiscentes) o lásers. Los primeros se suelen usar para tendidos entre máquinas, mientras que los segundos se usan para tendidos primarios de backbone.

Tramas FDDI

Las tramas en la tecnología FDDI poseen una estructura particular. Cada trama se compone de los siguientes campos:

  • Preámbulo, que prepara cada estación para recibir la trama entrante.
  • Delimitador de inicio, que indica el comienzo de una trama, y está formado por patrones de señalización que lo distinguen del resto de la trama.
  • Control de trama, que contiene el tamaño de los campos de dirección, si la trama contiene datos asíncronos o síncronos y otra información de control.
  • Dirección destino, que contiene la dirección física (6 bytes) de la máquina destino, pudiendo ser una dirección unicast (singular), multicast (grupal) o broadcast (cada estación).
  • Dirección origen, que contiene la dirección física (6 bytes) de la máquina que envió la trama.
  • Secuencia de verificación de trama (FCS), campo que completa la estación origen con una verificación por redundancia cíclica calculada (CRC), cuyo valor depende del contenido de la trama. La estación destino vuelve a calcular el valor para determinar si la trama se ha dañado durante el tránsito. La trama se descarta si está dañada.
  • Delimitador de fin, que contiene símbolos que indican el fin de la trama.
  • Estado de la trama, que permite que la estación origen determine si se ha producido un error y si la estación receptora reconoció y copió la trama.

Medios en las redes FDDI

FDDI especifica una LAN de dos anillos de 100 Mbps con transmisión de tokens, que usa un medio de transmisión de fibra óptica. Aunque funciona a velocidades más altas, FDDI es similar a Token Ring. Ambas configuraciones de red comparten ciertas características, tales como su topología (anillo) y su método de acceso al medio (transferencia de tokens). Una de las características de FDDI es el uso de la fibra óptica como medio de transmisión. La fibra óptica ofrece varias ventajas con respecto al cableado de cobre tradicional, por ejemplo:

  • Seguridad: la fibra no emite señales eléctricas que se pueden interceptar.
  • Confiabilidad: la fibra es inmune a la interferencia eléctrica.
  • Velocidad: la fibra óptica tiene un potencial de rendimiento mucho mayor que el del cable de cobre.

 

Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis